CAPABILITIES OF HYDROGEN PEROXIDE CATALYST BEDS 7/18/00

- Hydrogen Peroxide as Monopropellant
- History of Decomposition
- Proven Methods of Decomposition
 - Liquid-Liquid
 - Pellet Catalyst Beds
 - Screen Catalyst Beds
- Performance of Screen Catalyst Beds
- Conclusions

7/13/00

Hydrogen Peroxide as Monopropellant

- Monopropellants Decomposes and Release Energy
 - Presence of Catalyst
 - Presence of Thermal Energy
- Several Liquids are Monopropellants
 - Only a few Have Found Rocket Applications
 - Hydrazine and Hydrogen Peroxide Dominate Historical Use
 - Higher Energy Propellants are Considered to Unstable
- Specific Impulse of 90% H2O2 ~ 25% Below Hydrazine
- Density Impulse of 90% H2O2 ~ 6% Higher Than Hydrazine
- 90% H2O2 Does Not Require Sealed Handling Suits Like Hydrazine
- H2O2 Non-Toxic Decomposition Products
 - Oxygen and Water

History of Decomposition

- First Found Rocket Use in Germany WWII 80 to 85% H2O2
 - V-1 RATOs, V-2 Turbopumps, ME163
 - Submarines (with Kerosene)
- UK After WWII to Mid 1960's
 - Gamma Engine Main Propulsion, RATOs
- US After WWII to Late 1970's
 - X-1, X-15, Scout
- Decline in Use Replaced by Hydrazine late 1960's
 - Performance Driven
- US 1990's Renewed Interest in Niche Markets
 - Handling, Green, Cost Driven Systems
 - Chemical Lasers, X-37 Main Propulsion

Proven Methods of Decomposition

- Many Methods Exist
 - Desire Robust, Simple, Long Life
 - All Fielded Systems Use Catalyst For Decomposition
 - Three Primary Methods
- Liquid Liquid
 - Germany WWII
- Pellet Catalyst Beds
 - Germany WWII
 - UK Short Experimental Period After WWII
 - US Redstone, Jupiter
- Screen Catalyst Beds
 - UK Until Termination of Black Arrow Program (1973)
 - US The Method of Choice

- Two Liquid System
 - One Liquid is Hydrogen Peroxide
 - Second Liquid is Catalyst Doped
 - Liquids Co-injected in Chamber Where Decomposition of H2O2 Occurs
- First H2O2 Decomposition System to be Fielded
 - Germany WWII
 - Typical Catalyst is Manganate Family (Ca, K, Na)
 - Example V-2 Turbo Pumps (Water Permanganate / H2O2)

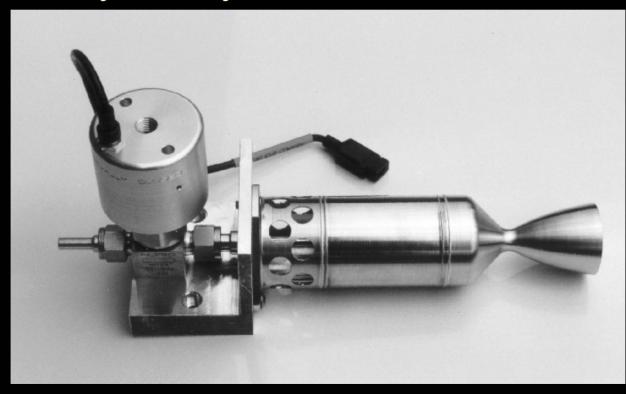
- Advantages
 - Injection Technology Similar to Bi-Propellant Systems
 - Catalyst Less Contamination Sensitive
- Disadvantages
 - Requires Second Fluid System
 - Catalyst is Expelled with little Specific Impulse Value
 - Exhaust is Diluted by Catalyst Carrier Liquid
 - Catalyst Must Be Soluble
- Upgrade System Uses Fuel As Carrier Liquid
 - ME163 Hydrazine Hydrate/Methanol

Pellet Catalyst Beds

- Catalyst is a Solid in a Pressure Vessel
 - Liquid H2O2 Enters, Exists Decomposed
 - Catalyst Placed on Substrate by Dip and Bake Method
 - − Vessel filled with Pieces of Catalyst/Substrate 0.5" − 2" Longest Dim
- First Used in Germany late WWII
 - Typical Catalyst Permanganate
 - Example German Submarines

7/13/00

- Advantages
 - Elimination of Second Fluid System
 - Reduced Mass of Catalyst Required
 - Catalyst Does Not need to be soluble (Prefer Not MnO2)
- Disadvantages
 - Life on the Order of Minutes
 - Silting, Breakup of Substrate, Catalyst
 - Increased Concentration of H2O2 Reduces Life
 - Catalyst Must be Held in Pressure Vessel



- Catalyst is Solid in Pressure Vessel
 - Liquid H2O2 Enters, Exists Decomposed
 - Catalyst is in the form of Wire Mesh
 - Plated on Catalyst or Pure Catalyst
- First Used by UK, US After WWII
 - Favored Catalyst is Silver
 - Example RCS Thruster

Present Day Catalyst Bed

- Advantages
 - Catalyst More Robust
 - Longer Life on the Order of Hours
 - Smaller Device than Pellet Beds
- Disadvantages
 - Poisoning by Fluid Impurities
 - Silver Limited to ~ 92% H2O2
 - Catalyst Must be Held in Pressure Vessel

Performance of Screen Catalyst Beds

- Several Important Parameter of Performance
 - Life, Mass Flux, Pressure Drop, Mass
- Most Influential is Mass Flux
 - Upper Limit of Operation Not Necessarily Driven By Catalyst
 - Pressure Drop and Life Requirements are the Extremes
 - Typical Limits of Flux 0.05 to 0.4 lbm/(in^2-s)
 - Typical Pressure Drops from 20 to 200 psid

Performance of Screen Catalyst Beds

7/13/00

- Hydrogen Peroxide Monopropellant Devices Have Long History
 - Rocket Devices for Over 50 years
- Evolution of Methods of Decomposition Since WWII Germany
 - All Methods Based Upon Use of Catalyst
 - Liquid Liquid (WWII Germany)
 - Pellet Beds (WWII Germany & Short Period After WWII UK, US)
 - Screen Beds (1950's to Present)
- Screen Beds Have Stood the Test of Time
 - Life of Hours
 - Mass Flux Range 0.05 to 0.4 Lbm/(in^2-s)
 - Pressure Drops 20 to 200 psid