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Abstract. This paper summarizes the work at Lawrence Livermore National Laboratory in the
development, integration and testing of the critical enabling technologies needed for the realization
of agile micro-satellites (or MicroSats). Our objective is to develop autonomous, agile MicroSats
weighing between 20 to 40 kilograms, with at least 300 m/s of Dv, that are capable of performing
precision maneuvers in space, including satellite rendezvous, inspection, proximity operations,
docking, and servicing missions. The MicroSat carries on-board a host of light-weight sensors and
actuators, inertial navigation instruments, and advanced avionics. The avionics architecture is
based on the CompactPCI bus and PowerPC processor family. This modular design leverages
commercial-off-the-shelf technologies, allowing early integration and testing. The CompactPCI
bus is a high-performance, processor independent I/O bus that minimizes the effects of future
processor upgrades. PowerPCs are powerful RISC processors with significant inherent radiation
tolerance. The MicroSat software development environment uses the space flight proven Vx-
Works, a commonly used, well tested, real-time operating system that provides a rapid
development environment for integration of new software modules. The MicroSat is a 3-axis
stabilized vehicle which uses cold gas N2 for ACS and a novel pressure-fed, non-toxic, mono-
propellant hydrogen peroxide propulsion system for maneuvering.

  Introduction

Competition in the consumer electronics
marketplace continues to drive component
miniaturization and consolidation reducing
cost, mass and power consumption while
improving system performance. This
technology push should provide the
capability to build significantly smaller and
smarter micro-satellites (MicroSats) with wet
masses between 10 to 100 kilograms. This
paper describes on-going efforts at Lawrence
Livermore National Laboratory to develop the
critical enabling technologies needed for the
realization of autonomous agile MicroSats
that are highly autonomous in function, less
than 50 kg in mass, and possess a robust
orbital maneuvering capability of >300 m/s of
Dv. LLNL has developed a preliminary
design of a near-term MicroSat for a variety
of Rescue Mission applications and has
constructed two prototype vehicles for
ground test experiments.1 This paper will
discuss representative mission applications,

enabling vehicle technologies, and integrated
vehicle testing approaches.

   Potential Missions

Potential missions for MicroSats center on
space ÒlogisticsÓ missions such as rescue and
servicing, that will require vehicles with the
ability to perform a variety of mission
functions autonomously or semi-
autonomously. These include, rendezvous,
inspection, proximity-operations (formation
flying), docking and robotic servicing
functions (refueling, repowering or
repairing). Each of these mission functions
require key technical capabilities. For
example, rendezvous with a space asset by
performing orbit matching requires precision
Dv maneuvers. Inspection of a space asset by
flying to different view points of an
inspection geometry requires precision
MicroSat positioning, precision pointing,
tracking and imaging. A satellite rescue might
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involve docking, repairing or refueling the
satellite, followed by a departure, and post-
rescue inspection. The rescue mission
requires precision guidance, navigation, and
control; precision ranging; high resolution
imaging; and some type of micro-robotic
manipulator. For example, a variety of
robotic arms could be used to enable the
MicroSat to perform a physical dock with a
target satellite. Once docked, a precision 6
degrees-of-freedom manipulator (actuator)
could be used to align and plug an external
connector into a targeted satelliteÕs umbilical
connector for data collection, diagnostic
measurements or repowering. Other space
logistic operations such as the collection and
de-orbiting of hazardous space debris (junk)
or the interdiction of asteroids or comets in a
planetary defense system, requires precision

vehicle guidance, navigation and control and
a precision endgame homing strategy.
Formation flying, flying in concert with a
space object or another MicroSat, requires
station keeping and positioning, and
precision state vector estimation.

Recently LLNL has studied the technologies
and requirements for a satellite Rescue
Mission.1 Table 1 contains a preliminary
analysis of a timeline for this representative
rescue mission. It assumes a Pegasus launch
for the MicroSat with orbit injection errors as
outlined under Day 1Õs General Comments.
The estimated Dv for each MicroSat
maneuver is listed. It is assumed that the
servicing required is a battery recharge and
processor restart.   

Table 1 Preliminary Rescue Mission timeline for Rendezvous, Inspection, Docking and Departure.
Day Event DV

(m/s)
General comments

1
¥   Pegasus launches and deploys MicroSat
¥   MicroSat performs practice rescue
mission with payload interface adapter
¥  MicroSat orbit determination

15
Pegasus with HAPS (hydrazine auxiliary
propulsion system) can place MicroSat with
the following (3s) injection errors:
± 5 km @ apogee; ± 5 km @ perigee;
0.5° in ascending node; 0.05° in inclination

2
¥   MicroSat corrects ascending node using
out of plane Dv
¥   MicroSat Orbit determination

50
Out of plane Dv causes orbital plane to rotate
about the radius vector and thus corrects the
ascending node angle

3
¥   MicroSat initiates correction of
inclination angle at the ascending node
¥   MicroSat Orbit determination

20
Out of plane Dv @ ascending node changes
the orbital plane inclination ; MicroSat is
expected to within 1-10km behind target
satellite

4
¥   MicroSat initiates apogee and periapsis
corrections
¥   MicroSat Orbit determination

3
Correct apogee error to within 1 km of target
satellite and avoid collision

5 ¥   MicroSat initiates perigee correction
¥   MicroSat Orbit determination 2

Correct perigee error to within 1 km of target
satellite and avoid collision

6
¥   MicroSat proceeds to a point 100m
behind target satellite 50

Image target and conduct station keeping;
relay imagery to ground

1 4 0
Total Dv required for orbit match and
rendezvous including a complete
practice docking
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7
¥   MicroSat initiates a 100m circular
inspection of target
¥   Preliminary estimate of target axis of
rotation and rotation rate

25
Relay imagery and estimates to ground for
detailed analysis

8
¥   MicroSat proceeds via a circular transfer
orbit to 10m range from target satellite
¥   Refine target spin axis estimation
¥   Initiate a 10m circular maneuver about
target spin axis and track the landing site

8

2

Image target and relay pertinent data to ground
station

9
¥   MicroSat proceeds to 3-5m range from
target
¥   Execute a circular maneuver about target

1

2

MicroSat tracks landing site, analyses
imagery, and orients itself for landing

10
¥   MicroSat closes in and docks

2
MicroSat grabs on target satellite flange
structure

11
¥   Align MicroSat to target
    connector 1

Send imagery to ground and wait for up-link
command to proceed

12
¥   Insert  MicroSat adapter into target
satellite connector 2

MicroSat uses a six degree of freedom fixture
to insert pin connector and vision based
imaging software to guide adapter

13
¥   Mate and revive lost satellite Trickle charge satellite battery, re-activate

satellite computer, and report reactivation
diagnostics to ground

14 ¥   Departure from satellite 2 Move away to 50 - 100m behind satellite

15
¥   Observe target satellite deployment
maneuver 5

Mission accomplished

5 0
Total Dv for Inspection, Docking,
and Departure operations

    Spacecraft Technologies  
 
The LLNL MicroSat is an adaptation of the
lightweight spacecraft technology developed
for the Clementine I & II missions. It features
a lightweight, Seeker Head, state-of-the-art
avionics, H2O2  divert propulsion system
with N2 gas for attitude control, VxWorks
based real-time controller with a collection of
technology based software for precision
guidance and control and image analysis.
Key modifications from the Clementine
missions include the addition of stereo

cameras for passive ranging and 3D imaging,
a micro-impulse radar for precision docking,
miniature grappling arms for docking and a
6DOF robotic arm for satellite servicing. Also
added is a mating camera to provide vision
feedback to guide the robotic arm, a GPS
receiver for precision orbit determination, and
spot lights for illumination. Figure 1 shows a
conceptual design of this system based on
current prototype MicroSat vehicles. The
following paragraphs briefly describe the
enabling technology for the development of
the agile MicroSat.
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Figure 1  A conceptual MicroSat designed for a rescue mission.

   MicroSat Spacecraft  

Figure 2 shows an exploded view of the
current design of the MicroSat. The Seeker
Head Assembly consists of a suite of imaging
sensors and provides the GN&C input to the
vehicle. These sensors include a high
resolution acquisition camera for long range
detection and standoff inspection, a medium
field-of-view inspection camera for closer-in
inspection, one of two small wide-field-of-
view (WFOV) color docking cameras for
stereo imaging and passive ranging, a WFOV
Star Tracker for inertial navigation, a
lightweight IMU, a compact GPS unit and a
miniature micro-impulse Docking Radar. The
IMU operates in conjunction with the Star
Tracker to provide attitude quaternions for
precision vehicle guidance and control. The
MicroSatÕs modular state-of-the-art avionics
suite is based on a compactPCI bus and uses
a PowerPC 603e processor and several I/O
modules that support the rest of the vehicle
sub-systems. Other sub-systems include a

pair of rechargeable NiCad battery packs,
solar array panels for battery charging,
coupled ACS jets for in-place rotation, H2O2
divert thrusters and N2 jets for precision
translation control. Also included is a mini-
SGLS transponder that is AFSCN
compatible, a set of grappling arms for
docking and a 6DOF robotic actuator for
satellite servicing (arms and actuator not
shown in this view).

In order to achieve centimeter level of
position control of the MicroSat, during
docking maneuvers, we make use of the
small minimum impulse bit that is available
from the cold gas propellant. Our current
design goals are: 4 N-s for H2O2 diverts,
0.01 N-s for cold gas diverts. The current
MicroSat ground test vehicle is <25 kg and
our final design for a flight qualified
MicroSat with a full complement of
subsystems is expected to weigh less than 40
kilograms.
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Figure 2  An exploded view of the MicroSat design for the rescue mission (Some components not
shown).

The original worst case minimum thruster
burn period was assumed to be one second
(assumes a cold start) for the H2O2 divert
system and five milliseconds for the nitrogen
system. Table 2 below computes a
preliminary set of requirements for the
minimum impulse bit (MIB), minimum
resolution in velocity, minimum resolution in
position, and maximum vehicle acceleration.
based on these timing assumptions. The
coupled cold gas ACS can provide precision
translation, by firing two matching 1N ACS

jets simultaneously, a mission requirement
used primarily during precision orbit
matching, docking, un-docking and departure
maneuvers. Preliminary testing of the H2O2
divert system indicates that once the thrusters
have been warmed-up the response times are
typically 10X shorter. For example our
prototype 20 N vacuum thruster provided 14
N thrust at sea-level with less than a 0.1
second response time when warm. This
yielded an MIB of approximately 1 N-s for
the first generation H2O2 divert system2.

Table 2     Precision vehicle control requirements.
Thrust pulsewidth MIB Dv Dp Accel comments
(N) (sec) (N-sec) (m/s) (m) (mg)

4 1 4 0.1 0.05 10 H2O2 (cold start)
2 0.005 0.01 0.00025 6.25E-07 5 N2 gas

Wet Mass <40 kg

   Propulsion
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LLNL's current approach to propulsion for
micro-spacecraft is to work with nontoxic
propellant. We have demonstrated that
hydrogen peroxide, when used on a scale
appropriate for micro-spacecraft, permits
cost-effective bench-top testing of custom-
developed hardware. Unlike conventional
space propulsion systems, a hydrogen
peroxide (H2O2) micro-propulsion system
can readily be tested at the system level, even
after spacecraft integration.

While H2O2 has a lower specific impulse than
hydrazine, 2.5 times the Isp of cold nitrogen
is readily achieved. In addition, H2O2 has
over 3 times the density of 5,000 psi
nitrogen. The combined effect of Isp and
density makes monopropellant H2O2 many
times more capable than cold gas used alone,
which is currently the only choice for
custom-designed micro-propulsion systems.

Recently during the second half of FY97,
LLNL researchers designed, fabricated,
tested, debugged, and demonstrated a
miniature divert propulsion system (see
Figure 3 below) in support of the Clementine
II asteroid intercept mission plan1,2. The
results of ongoing R&D (e.g. long term tank
storage tests) indicate that custom-designed
H2O2 propulsion is well suited to LEO
missions, for spacecraft weighing 10 kg to
50 kg total.

There are several options for using H2O2,
including self-pressurizing tanks which feed
liquid to catalytic thrusters, while also
delivering a steam-oxygen mixture to warm
gas attitude control jets. A relatively small
amount of kerosene can be carried to double
the specific impulse (nontoxic bipropellants).
Figure 4 shows the block diagram of a first
generation pressure-fed H2O2 propulsion
subsystem.

Figure 3  Demonstrated H2O2 miniature divert
propulsion technology.

The total maneuvering requirement is 250
m/s, including a maneuvering reserve. The
propulsion system is being designed to 300
m/s, for a 20% propulsion margin. The
breakdown is 275 m/s with the liquid system
and 25 m/s with nitrogen (ACS impulse
requirements have been converted to an
equivalent delta-v based on vehicle mass after
liquid burns are complete). The micro
spacecraft total mass allowance is 40 kg, of
which 9 kg of 85% H2O2 would be required
to achieve 275 m/s at Isp=130 s. Delivering
25 m/s after liquid burnout requires 1.89 kg
of nitrogen at Isp=50 s. This includes an
additional 150 grams of nitrogen to
pressurize the liquid tanks. Initial hardware
mass estimates are 5 kg for the "tank-as-
structure" liquid system (already
demonstrated with prototype hardware), and
4 kg for the gas components. Thus, total wet
propulsion mass is just over 20 kg.

A preliminary estimate of the vehicle mass
budget is shown in Table 3 below. A total
vehicle wet weight of 39.9 kg with a design
margin of 7.2 kg is shown at the current
conceptual design stage. Our goal is to
achieve a total wet weight of less than 40kg.
The table shows that we should be able to
meet this goal and that there is also adequate
margin to mass balance the vehicle.
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8

Figure 4  First generation block diagram of a pressure-fed MicroSat propulsion subsystem.

Table 3  Preliminary estimate of the MicroSat vehicle mass budget.

Subsys t em Mass Estimate (g) Contingency (g) Total Mass
( g )

Seeker Assembly 6 3 1 0 5 6 0 6 8 7 0

Clementine I Star Tracker Assembly 330 30 360

Acquisition Camera Assembly 1400 0 1400

Inspection Camera Assembly 330 30 360

Docking Camera Module Assemblies #1 100 50 150

Matting Endoscopic Camera Assembly 150 50 200

IMU and Accelerometer Assembly 800 0 800

GPS Receiver Assembly 300 100 400

Microimpulse Radar 300 100 400

Battery Pack Assembly (2) 2200 100 2300

Seeker Head Mechanical Structure 400 100 500

Avionics Assembly 5 4 8 0 1 4 2 0 6 9 0 0

Seeker Avionics Assembly 2000 500 2500

Power Conditioning Module 1000 200 1200

Valve Driver Module (2) 230 20 250

Comm Module Assembly 750 400 1150

Matting Actuator Assembly 1500 300 1800

Docking Camera Module Assemblies #2 100 50 150
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Propulsion/Solar Array Assembly 1 2 7 0 0 2 5 5 0 1 5 2 5 0

H2O2 Propulsion Assembly 5000 500 5500

GN2 ACS Assembly 4000 750 4750

Wire Harness 900 100 1000

Thermal Control Assembly 500 500 1000

Solar Array Assembly (4) 1000 100 1100

Grappling Arms for Docking (4) 600 400 1000

Vehicle Mechanical Structure 500 150 650

Docking Illuminators (2) 200 50 250

MicroSat Dry Weight (g) 2 4 4 9 0 4 5 3 0 2 9 0 2 0

H2O2 Fuel (g) 6350 2650 9000

GN2 Fuel (g) 1890 0 1890

MicroSat Wet Weight (g) 3 2 7 3 0 7 1 8 0 3 9 9 1 0

    
   Sensors

The sensor suite or Seeker Head consists of a
Star Tracker for attitude determination using
stellar navigation, a high resolution
Acquisition camera for long range (20 km to
0.1 km) target detection and stand-off
inspection, a medium resolution Inspection
camera for closer-in inspection (in the 100 m
to 10 m range), one of a pair of wide-field-
of-view color Docking cameras for
proximity-operations (in the 10 m to 0.1 m
range), a microRadar for active close-in (< 10
meter distances) providing precision range
and range-rate measurements, a compact
GPS receiver for coarse position
measurements, and an IMU for inertial
navigation. These sensors are lightweight and
compact. The imaging cameras (Acquisition,
Inspection and Star Tracker) were originally
developed for ballistic missile defense
applications. A schematic of the MicroSat
sensor suite is shown in Figure 5. Versions
of the Acquisition (HiRes) camera,
Inspection (UV/Vis) camera and the Star
Tracker cameras, have previously flown in
the successful Clementine I Lunar mapping
mission3,4,5.

WFOV Star Tracker

A key sensor in the MicroSat is a wide-field-
of-view (WFOV) Star Tracker which
provides inertial orientation of the vehicle.
The Star Tracker camera in conjunction with
Stellar Compass software can provide a
quaternion pointing accuracy of 450 mrad.
The Star Tracker field of view is large
enough to contain several bright stars in any
orientation. Single images are processed to
identify unique stellar patterns and provide
the determination of the inertial orientation of
the MicroSat in real-time. The Star Tracker
lens was specified and built to have a 42° x
28° field of view. This sizing results in a
pixel IFOV of 1.3 mrad, which is small
enough to provide the requisite quaternion
accuracy. The collection aperture of the lens
is maximized for the greatest possible light
gathering capability. At F/1.25, mv = 4.5 G0
stars provide an integrated star signal that is
15 times the electronic noise from the focal
plane. This level of signal gathering
capability, matched with the wide field of
view, ensures a 99.9% probability that 5
stars above minimum threshold will be
available for the algorithm set for all possible
quaternion pointing vectors. This allows the
Star Tracker to handle the Òlost in spaceÓ
condition with a single star image frame and
no other a priori knowledge of attitude. A
preliminary analysis of the imaging sensor
requirements to support the various phases of
a typical rescue mission is given next.



Arno G. Ledebuhr 12th AIAA/USU Conference on Small Satellites
9

Hi-Res Camera

Stereo Camera

GPS

Radar

IMU

Star 
Tracker

UV/Vis Camera

Accelerometers

Battery Pack

Figure 5  Multi-function MicroSat sensor suite.

Sensor Requirements

The top-level optical system requirements,
shown in Table 4 below, support operational
phases of our representative rescue mission.
In the    Rendezvous      phase   from 20 km to 100
meters, the High Resolution Acquisition
sensor will be required to identify the target
and provide centroids to the guidance system.
This sensor will provide the first detailed
images to the ground at a few kilometers out.
At several hundred meters out a transition
will be made to the Medium Resolution
Inspection camera which will be used to
determine the target spacecraftÕs rotational
parameters. The 100 m to 10 m closing
portion of the   Inspection       phase   will again
require input from the optical sensors, and
the 10 m inspection will produce more
detailed images for ground evaluation. At 10
meters the vehicle will rotate 90 degrees
(pitch or yaw) and will then switch to its pair

of color Docking cameras. The sensors will
again be required to provide information to
the guidance and navigation control system
during the 10 m to 10 cm closing portion of
the    Docking         phase  . For the docking
maneuver the optical sensors will allow
features to be identified, and in the terminal
phase they will determine the precise location
on the target where the hard dock will be
made (launch vehicle Marmon interface
flange). After the docking is complete, the
sensor system will provide images for the
   Servicing       phase   of the mission including
providing images that support the mating of
the MicroSat to the target satelliteÕs umbilical
connector and confirmation when the
connection is completed. A small Mating
camera (Endoscopic), attached to the Mating
Actuator (manipulator mechanism) will
provide imagery of the precise alignment and
orientation of the individual pins in the
connector. After the servicing is complete and
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Table 4  Top Level Optical System Requirements.
Mission Phase

Label
Range Sensor Function Operational Phases

A 20 km - 100 m acquisition/tracking Rendezvous
B 100 m - 10 m imaging/tracking/guidance Inspection
C 10 m - 10 cm imaging/guidance Docking
D 10 cm - 1 mm imaging/guidance/alignment Servicing
E 10 cm - 100 m imaging/tracking/guidance Departure

the MicroSat switches to the    Departure      phase  ,
it will un-dock and depart the satellite. The
sensor system now will produce new
inspection images to confirm the successful
servicing operation.  

Each mission phase levies a particular set of
requirements on the optical sensor system.
These requirements are best met with a
sensor system optimized for each mission
phase. An alternate approach would be to
utilize a zoom lens system to provide
overlapping capability. Future designs will
explore this option. Our current optical
system mission support is summarized in
Table 5. The Star Tracker provides MicroSat
attitude information in all mission phases,
and is used to support both the identification
of the satellite spin axis in inertial space, and
MicroSat guidance and navigation. The
Acquisition camera provides the long range
acquisition of the target spacecraft and

provides initial imagery of the target. This
camera supports the terminal portion of the
Rendezvous phase and can provide data to
support an autonomous rendezvous
operation. The Inspection camera provides
additional target information to the guidance
and navigation computer, and also supplies
detailed target images at 100 meter to 10
meter ranges. The Docking camera system
produces close-in imagery of the payload
interface flange (docking region) of the target
satellite. This system may be used in either
stereoscopic or monoscopic mode. Stereo
imagery provides passive range data for the
GN&C system. The docking camera is also
used to assist in mating the umbilical
connector. The Mating camera is mounted on
the 6DOF manipulator and will support the
fine alignment of the two connectors. The
Departure phase will essentially be a time
reversal of the Docking and Inspection
phases and can be met with these sensors.

Table 5  Optical System Mission Support.
Camera Effective Range Mission Phases Supported

Star Tracker N/A A,B,C,E
Acquisition Camera 20 km - 100 m A
Inspection Camera 1 km - 8 m A,B

Docking Camera System 10 m - 10 cm C,D,E
Mating Camera System 10 cm - 1 mm D

   Avionics

The MicroSat avionics architecture is based
on the latest PowerPC processor and
CompactPCI bus as shown in Figure 6. The
PowerPC family has significant inherent
radiation tolerance. The CompactPCI bus is a
high-performance, processor independent I/O

bus which will minimize the effect of future
upgrades in processors. The system supports
modern, well-used and well-tested embedded
software development environments. This
design allows rapid code development,
debugging, and testing, as well as hardware
integration. The chosen architecture and
processor will provide a high performance
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solution for multiple MicroSat missions. Its
modular design leverages COTS

technologies, allowing early integration and
test.   

CompactPCI Enclosure

Processor
Module

Frame Buffer
Module

Master
Power

Distribution

Data Store

Serial Ports

Sensor
Power

Distribution

Star
Tracker

Acquisition
High Res.
Camera

IMU

Mating
Interface

RF
Transponder

Batteries

Latching
Switch Power Enable

Ethernet
Module

Ground Test/
Debug Port

GPS
Receiver

Microimpulse
Radar

Charging &
Regulation

Solar
Panels

Docking
Cameras (2)

System Interface
Module

Motor/Actuator
Controllers

External Interface
Module

Inspection
Visible
Camera

Mating Actuator
Camera

Valve
Drivers

Figure 6  CompactPCI architecture. Figure 7  PowerPC
Processor.

It provides a clear path to performance
upgrades. In addition, this approach and type
of architecture are being embraced by major
aerospace system providers.

Processor Module

The MicroSat processor module contains a
high-performance PowerPC 603e RISC CPU
(100MHz-300MHz) that utilizes the 33 MHz,
32 bit data path (132 Mbyte/sec max)
CompactPCI bus, a high bandwidth I/O bus
that is an industry-standard ruggedized
version of the desktop PCI bus used in
virtually all desktop computers, MPC106
PCI bridge/memory controller with built in
memory single bit error correction and double
bit error detection and low power modes, 32
Mbytes DRAM, 4 Mbytes flash EEPROM, 8
Kbytes PROM, a real time clock with 4
Kbytes non-volatile RAM, two high-speed

UART channels, interval timers, and
watchdog circuit. The flight processor will be
a COTS module with modifications for
thermal management and radiation tolerant
parts as needed.

The MicroSat local data store will be
connected to the processor's IDE controller
port as indicated above. This will be a
commercially available Flash Disk that has
built-in error correction capability. The size
of the disk selected will be based on the
worst-case telemetry data requirements. The
docking phase presents the most stressing
conditions. In Table 6 we show data store
requirements for a representative rescue
mission. Estimates are provided for two
different docking camera designs, using two
different CCD size options (different pixel
number, size and formats, designated A and
B).
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Table 6  Data storage requirement estimates for a representative Rescue Mission.
Component/subsystem Unit Count         Frame size Frames Pixels Bytes Bytes Comp. Data Store Minutes Storage Req.

Horiz Vert /sec /sec /p i xe l /sec Ratio :1 Bytes/sec Active Bytes

Non-image data 5 , 0 0 0 2 0 6 ,000 ,000
Star Tracker 1 5 7 6 2 8 8 0.1 1 6 , 5 8 9 1 1 6 , 5 8 9 2 8 , 2 9 5 2 0 9 ,954 ,000
Docking Cameras (A) 2 5 1 2 5 1 2 1 0 5 ,242 ,880 1 5 ,242 ,880 2 0 262 ,144 2 0 314 ,572 ,800
Docking Cameras (B) 2 2 5 6 2 5 6 1 0 1 ,310 ,720 1 1 ,310 ,720 2 0 65 ,536 2 0 78 ,643 ,200

SubTotals (A) 5 ,259 ,469 5 ,259 ,469 275 ,439 330 ,526 ,800
20% Margin 66 ,105 ,360
Total (A) 396 ,632 ,160

Download Minutes @ 1 Mbps 5 6

SubTotals (B) 1 ,327 ,309 1 ,327 ,309 78 ,831 94 ,597 ,200
20% Margin 18 ,919 ,440
Total (B) 113 ,516 ,640

Download Minutes @ 1 Mbps 1 6

Frame Buffer Module

The digital frame buffer module is designed
to provide a high-performance image
acquisition and data handling interface
between the CompactPCIª bus and high-
speed digital cameras. The features of the
module are as follows: frame formats to
4096x4096, 8 to 16 bit pixels, pixel clock
rates to 20Mhz, two independent video
channels (simultaneous acquisition),
multiplexed operation for cameras sharing
channels, Automated Imaging Association
(AIA) digital camera compatibility,
Synchronous  Addressable Serial Interface
(SASI) camera controllers, 32 Mbytes
SDRAM image storage, Image compression
(Lossless » 2:1, Lossy > 10:1), and a
CompactPCI bus interface with Direct Master
or Slave operation and two independent DMA
controllers. The frame buffer is a LLNL
design that will contain rad-tolerant
controllers and will incorporate thermal
management.

RF Transceiver

The RF transceiver under development for
MicroSat applications is a SGLS-signaling
AFSCN-compatible unit that is being
developed by the Naval Research Laboratory
(NRL). This unit was started as part of the
Clementine II program and was originally
designed to provide a telemetry link between
the asteroid impact probe and the Mothership
bus during its fly-by of a near earth (earth-

crossing) asteroid. This new transceiver
design is expected to have dimensions of
14.5 cm x 14.5 cm x 4.6 cm and a mass that
is under 2 kg. It is designed to operate on
SGLS Channel 10, with a command up-link
data rate of 2 kbps (1799.76 Mhz) and a
telemetry down-link data rate of 1 Mbps
(2247.5 Mhz). For a 1 Mbps telemetry rate
the total estimated radiated output power is 3
watts and the total power consumption is 25
watts. More detailed information may be
obtained by consulting the NRL Naval Center
for Space Technology specifications SSD-S-
CM013 and SSD-S-CM017.

GPS Receiver

Several commercially available GPS receivers
are available for this application and a light
weight (<2 kg) space qualified unit is
available from Boeing North AmericaÕs
Rockwell division. Initial testing will be
carried out with off-the-shelf commercial
units, one of which will be selected for flight
qualification during the later development
phase of a flight experiment program.
Ground test experiments will be carried out
with differential GPS to determine the
accuracy and utility of the position and
attitude data derived from this subsystem.
Closed loop positioning (docking)
experiments will be performed to determine
the overlap in functionality between the
various sensor systems (Star Tracker, Micro-
Radar and Docking cameras).
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   Power Distribution System

In order to minimize the size and mass of the
MicroSat solar array assembly and battery
pack, a power management scheme is
required which allows components and
subsystems to be powered down when not
needed, and which allows for periods of
recharge between periods of activity that
cause the battery charge level to fall below
nominal value.

The master power distribution module
contains a low power consumption controller
for the purpose of spacecraft power
management. The controller is capable of
monitoring and controlling the power to all of
the spacecraft loads. A communications link
to the system processor allows the system
processor to make mode changes to the
power management controller, send power
down commands, monitor the power system
condition and provide a way for the controller
to signal the system processor of power
system alarms. During the power down
period the battery modules will be recharged
by the solar cell array. The recharging rate
will be a function of the particular mission
orbit flown, which will determine the average
solar incidence angle and effective exposure
time.

Battery Module

Representative power system design for a
near-term first generation agile MicroSat is as
follows. Each battery module would contain
a 23 cell, rechargeable, high capacity Nickel-
Cadmium battery pack. At a nominal output
voltage of 28 Volts, the module will produce
50 Watt-Hours (Wh) of power at a mass of
1,100 grams. The high capacity Nickel-
Cadmium cells have approximately 40%
more capacity than that of standard cells.
Discharge characteristics include nearly
constant voltage, low internal impedance and
short term discharge rates of up to 100 times
the amp-hour cell rating. The cells can
withstand over charging and discharging.
They feature long storage and service life,
and they are rugged and reliable. Nickel-
Cadmium technology has a long history and

is well characterized. Future efforts will look
to qualify Li-ion technology for MicroSat
applications since these cells have a 2X
increase in energy storage density (specific
energy in Wh/kg). Alternate technologies
include miniaturized fuel cells which promise
a >4X improvement over Li-ion cells.

Solar Array Module

The solar array module would consist of an
array of high efficiency, advanced technology
dual-junction gallium arsenide solar cells.
Each panel will produce a maximum of 25
Watts output per module (actual power output
will of course be a function of the angle of
incidence of the sun). In this first generation
design there would be four body fixed
modules that enclose the propulsion tank
structure of the MicroSat, see Figure 2. The
solar array module consists of a honey comb
substrate to which the solar cells and their
cover slides are attached. Each cell has an
individual protection diode and is wired to
provide a 28 volt output. A mass estimate for
this assembly, based on real hardware, is
approximately 224 grams per module. The
cover slide protects the cell from handling
and radiation. The benefit of this dual
junction cell technology is that each of the cell
junctions, simultaneously convert a different
part of the solar spectrum into electrical
power. Conversion efficiencies of 21.5%
have been achieved.

Power Management

Table 7 below summarizes the electrical and
power budget for the MicroSat to support a
representative rescue mission. While the
absolute maximum power consumption (with
all equipment on and operating at maximum
capacity) is estimated to be 300 W, the
maximum instantaneous consumption per
mission phase is about 170W. The actual
consumption per phase will be less when the
duty cycles of various components are
considered. For instance, the RF subsystem
will only be active when the MicroSat has an
opportunity to communicate with a ground
station. The previously described on-board
battery packs (two) will provide 100 Wh of
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continuous usage. The solar array is designed
to recharge the battery in about eight hours.
Thus the MicroSat will need to recharge its
battery packs after each maneuver. The
power budget estimated in Figure 7 is based
on relatively near-term Òin-handÓ
technologies and sub-systems and is
currently considered a conservative estimate.
Future flight hardware will be able to take
advantage of technology improvements that
reduce power consumption, providing greater
operational flexibility for future missions.

There are two means by which the MicroSat
will enter a power-down mode. The first is
initiated autonomously by the system
processor as a result of preprogrammed
mission operations or as a result of detecting
battery depletion via the master power
distribution module. The second means is
receipt and confirmation of a power-down
command from the ground station.

Table 7  Electrical Power Budget and Profile.
Subsystem Absolute Maximum per Mission Phase:

Maximum(W) Rendezvous Inspection Docking/ Servicing
Departure

Processor Module 12 12 12 12 12
Data Store 2 2 2 2 2
Frame Buffer Module 10 10 10 10 0
Star Tracker 5.5 5.5 5.5 5.5 0
Acquisition Camera 7.5 7.5 0 0 0
Inspection Camera 5.5 0 5.5 5.5 0
Docking Cameras (2) 3 0 3 3 0
Mating Camera 1 0 0 1 0
External Interface Module 5 0 0 5 5
Motors/Actuators 30 0 0 15 0
Satellite Charging Load 50 0 0 0 50
System Interface Module 8 8 8 8 8
IMU 10 10 10 10 0
Microimpulse Radar 6 0 6 6 0
RF Subsystem 75 (10 Mbps) 12 (128 Kbps) 25 (1 Mbps) 25 12
GPS Receiver 1 1 1 1 0
Valve Drivers 30 6 6 4 0
Power Distribution 35 18 20 24 10
(75% eff)
Thermal Control TBD TBD TBD TBD

Subtotal 92 114 137  99
Margin (25%) 23     29     35   25

Total 297 115 143 172 124

When powering down the spacecraft, the
system processor will send a power-down
command to the power management
controller. The power management controller
will set the appropriate time into the wake-up
time comparator of the real time clock circuit,
and then will remove power to all loads,
make a battery voltage measurement, and put
itself to sleep. After being awakened by the
real time clock at the programmed time, the

controller will make a battery voltage
measurement, turn the system processor on
and report the battery condition with an
estimate of the spacecraft power available to
the system processor. During the power
down period the battery will be recharged by
the solar cell array.
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   Thermal Management

Thermal management on the MicroSat will be
accomplished by using industry standard
passive heat transfer mechanisms augmented
by tank heaters for the liquid fuel during
battery recharge mode. When the MicroSat is
performing LEO operations it will encounter
the solar flux of nominally 1353 W/m2. The
MicroSat will produce an additional 150 W
for about a 30 minute interval during typical
operational modes. This power level is
reduced to a few watts for approximately 8
hours during battery charge mode and then
the operational cycle can be repeated. Multi-
Layer Insulation, (MLI), sun shades, heat
sinks, radiators and surface coatings will be
employed for passive thermal control. MLI
will be used around the sensor suite as a
general purpose insulator from incident sun
loading and internal heat loss.

The Solar Array, module encapsulates the
H2O2 and N2 tanks and provides insulation
from incident sun loading and from internal
heat loss. Cooling radiators, integral to the
Solar Array module provide a passive means
to provide thermal control of that assembly.
A radiator panel assembly will be used to
thermally control the Avionics module.
Unshielded areas will be covered with MLI.
The MLI and radiator assembly also serve to
provide some radiation shielding for the
electronics.

   GN&C

The core capability of the MicroSat to
conduct precision rendezvous maneuvers and

docking with a satellite is defined by its
guidance, navigation, and control subsystem.
This subsystem contains functional software
that interacts with the various on-board
hardware, processes the signal, selects the
appropriate mission scenario, and issues a set
of maneuver commands to actuators and
valve drivers to meet the specified mission
objectives. Figure 8 shows a general block
diagram of the intrinsic GN&C function. The
hardware components include: GPS for orbit
estimation, MIR radar for close in ranging,
Stereo and HiRes cameras for imaging and
3D positioning, Star Tracker for inertial
orientation, RF COM subsystem to relay and
receive data, and an IMU for vehicle
stabilization and positioning. In addition, the
actuator hardware includes attitude control
jets, cruciform and axial divert thrusters, and
the 6DOF vision based servo arms to provide
a hard dock and to insert an adapter to the
satellite service pin connector.

The GN&C function will need to control the
spacecraft to better than one milliradian in
orientation, five millimeters in translation,
10mg acceleration for performing orbital
maneuvers and 1mg for close in inspection
and docking. An initial set of the IMU
performance requirements is listed in Table 8.
Several candidate IMUs can support these
requirements. The LN-200 seems to be a
good candidate, however its 1milli-gee bias is
marginal during docking maneuvers. This
can be remedied by either procuring a more
accurate set of accelerometers or making use
of the millimeter position resolution of the
microRadar.   
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Figure 8   MicroSat rescue mission guidance and control block diagram.

Table 8  IMU Requirements and performance comparison.

IMU Parameters Rescue mission LN-200 Systron Donnor Honeywell 
Requirements  m-IMU 1 3 0 5

Accel Performance Unit
   Operatinal range g < 40 4 0  100 +/- 50 (?)

Bias mg (1s) < 1 1 5 3

Bias stability mg < 1 1 0.5
Noise mg/rt_Hz < 50 5 0 5 0

G sensitive drift mg/g2 < 100 1 7 5 0
Scale factor ppm (1s) < 300 < 267 < 1500 600

 Axes misalignment mrad (1s) < 0.1 0.1 1.5 0.1
Data rate Hz > 50 400 6 5 400

Gyro Performance
   Operatinal range deg/s >  100 1000 100 +/- 500(?)

Bias deg/hr 0 0 > 100 (?) 0
Bias stability deg/hr < 5 3 5 1

Random walk deg/rt_hr < 1 0.07 (200 ?) 0.125
Angle noise mrad < 1 1 2 6 7.3

Quantization mrad < 1 0.24 13.5
G sensitive drift deg/hr/g (rms) < 5 1 2 1

Scale factor ppm (1s) < 500 300 1600 300
 Axes misalignment mrad (1s) < 0.5 0.3 5 0.1

Data rate Hz > 50 400 6 5 400

Mechanical & Electrical 
 Interfaces

Start up time sec (to stabilize) < 60 5 3 0
Supply voltage Vdc 15+ / - 15+ / - 5 +/- 15 +/-

Power W < 10 1 0 5 1 2
volume cm3 TBD 700 500

Size inches TBD 3.5Dx3.35H 4.3x2.5x1.75
Weight gm < 500 700 650 450

Electrical I/F 1Mbps SDLC 128 Hz digital serial

Environmental
Requirements

Temperature deg C 54- to 85+ 54- to 85+ 40- to 85+

Vibration g (rms) < 10 11.9 8
Shock g < 200 9 0 200

Prepared by: Larry Ng

revised: 13Jan98
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Figure 9 Hierarchical organization of mission software.

Table 9  Summary of processor requirements.
Processor Required Available Use/Rationale

Throughput 90 MIPS 100MIPS 50% Contingency Factor
RAM 15 MB 32 MB Code + Data. 50% contingency
RRPROM 3 MB 4 MB 3 code images. 50% contingency
ROM 4 KB 8 KB Bootstrap. Estimate
NVRAM 2 KB 4 KB Checkpoint State. Estimate

   Software

The MicroSat software development
environment uses the VxWorks real-time
operating system (RTOS). VxWorks is a
commonly used, well tested, RTOS that
provides a rapid development environment
for integration of new software modules. It is
also portable among many processors. It has
been used in space applications including
JPL's Mars Pathfinder and the Clementine I
spacecraft. LLNL has more than ten years of
experience in building software for spacecraft
applications. Many software modules for
GN&C, imaging, target tracking, and other
real-time operating codes can be adapted for
the representative satellite mission.

In general, LLNL's software development
philosophy is to maintain maximum
flexibility for multiple reuses and to test the
integrated software with realistic hardware-
in-the-loop experiments - as soon as and as
often as possible. Figure 9 shows the
hierarchical organization of the mission
software. Table 9 summarizes the memory
and throughput requirement for the
inspection/rescue mission. As indicated, we
have built in 50% contingency margins in the
processor and memory allocation. The peak
software throughput requirement is 90 MIPS
out of a 100, including a 50% contingency
factor. The peak requirement occurs during
docking, and is dominated by image
processing functions.   
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  Integrated Vehicle Testing

Ground performance testing is the key to the
success of a MicroSat mission. It is crucial to
be able to repeatedly practice and test the
integrated vehicleÕs ability to perform
precision orientation and translational
maneuvers. These tests should include
maneuvers to achieve orbit matching,
endgame chase, inspection, docking, satellite
servicing, and un-docking. Ideally, one
would like to have a 6 Degrees of Freedom
(DOF) test environment. However, in most
cases a 5 DOF or 4 DOF environment is
sufficient.

In order to support the testing of integrated
MicroSats, LLNL has developed 4 DOF and
5 DOF dynamic air bearing ground testing
facilities.6 The 4 DOF facility is an air rail
with 3 degrees of rotational freedom and one
degree of translational freedom. The 5DOF
facility is an air table with 3 degrees of
rotational freedom and two degrees of
translational freedom. These facilities enable
low cost  repeatable end-to-end performance
testing of completely integrated MicroSat
testbed vehicles, and full-up performance
acceptance testing of final flight hardware and
software before launch.

Air Table

One of our test vehicles on the air table is
pictured in Figure 10. The vehicle sits on a
hemispherical air bearing supported by 3
linear air bearings. The hemispherical air
bearing allows  ±15o pitch, ± 360o  yaw, and
±15o roll while the 3 linear air bearings
enables the vehicle to translate in 2
dimensions. This facility has been operational
for over 10 months and has had over 500
experimental runs performed on it including 3
DOF tracking, 5 DOF tracking, 360o yaw
maneuvers, and precision translational
maneuvers.  

Figure 10  Forerunner Test Vehicle on 5 DOF
Air Table.

Air Rail

The Engineering Test Vehicle (ETV100) is
pictured in Figure 11 on the air rail. The air
rail as pictured allowed only one degree of
translation and was used in this configuration
to test the ETV100Õs hydrogen peroxide
divert capability. The air rail is being
upgraded to enable full 4 DOF movement and
will be used to practice high speed diverts,
tracking, and docking maneuvers.

Figure 11  Engineering Test Vehicle
(ETV100) on 4 DOF Air Rail.
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Figure 12 shows a full scale engineering
model of the agile MicroSat.

   Summary

To date LLNL has developed a preliminary
conceptual design for an autonomous agile
MicroSat for on-orbit logistics operations.
Figure 12 shows a full scale engineering
model of this vehicle. On going efforts are
focused on integrated ground testing of
prototype MicroSat vehicle testbeds and the
development of advanced versions of our
non-toxic propulsion systems that will
provide multi-kilometer per second levels of
on-orbit Dv capability.
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