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ROCKET EXHAUST EFFECTS ON RADIO FREQUENCY PROPAGATION 

FROM A SCOUT VEHICLE AND SIGNAL RECOVERY DURING THE 

INJECTION OF DECOMPOSED HYDROGEN PEROXIDE 

By The0 E. S h s  and Robert F. Jones 

SUMMARY 

Received s igna l  strengths of three VHF telemeter s igna ls  
244.3, and 259.7 mc/sec) and one C-band radar-beacon s igna l  
were observed f o r  possible rocket exhaust e f f e c t s  during the 
of Scout ST-1 which w a s  launched from NASA Wallops S ta t ion  a t  7.04 p.m. 
e . s . t .  Ju ly  1, 1960. Also a UHF (400 mc/sec) command receiver w a s  moni- 
tored f o r  the presence o r  absence of a s igna l  from a ground-based 
t ransmi t te r  . 

Signif icant  rocket exhaust e f fec ts  on the three  VHF s ignals  were 
noted during burning of the second-stage motor from igni t ion  a t  an a l t i -  
tude of l30,OOO f e e t  t o  the beginning of rocket-motor t a i l -o f f  o r  slow 
burning a t  an a l t i t u d e  of 258,000 feet .  The e f f e c t s  were most severe 
between the a l t i t u d e s  of 197,000 f e e t  and 258,000 f ee t .  Similar e f f ec t s  
were observed during the second-stage burning of Scout ST-2 which w a s  
launched from NASA Wallops Stat ion a t  10:23 a.m.  e. s. t. October 4, 1960. 

Only minor exhaust e f f ec t s  on the C-band s igna l  were noted and the  
- 

s igna l  from the  ground-based transmitter was always present i n  the UHF 
receiver.  

Decomposed hydrogen peroxide, which w a s  in jec ted  i n t o  the flow 
f i e l d  a t  in te rmi t ten t  in te rva ls  by the control  j e t s ,  caused recovery of 
the  VHF signals.  During Scout ST-2 second-stage burning, operation of 
the hydrogen peroxide control  j e t s  also caused VHF s igna l  recovery. 

Possible contributing f ac to r s  t o  the observed rocket exhaust e f f ec t s  
on received s igna l  amplitude and t o  s i g n a l  recovery by the in jec t ion  of 
decomposed hydrogen peroxide are discussed i n  t h i s  report .  

- i t le,  Unclassified.  
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INTRODUCTION 

Rocket exhaust e f f e c t s  on radio frequency propagation from vehicles 
using l iquid f u e l s  were observed as long ago as the  German V-2 era. 
These e f fec ts  have been under invest igat ion f o r  many years and much has 
been learned but they a re  s t i l l  a problem when uninterrupted telemeter 
s ignals  a re  required. Reference 1 i s  a survey of accomplishments, s ta tus ,  
and t r e n d s  i n  the f i e l d  and contains a bibliography of selected r e fe r -  
ences available a t  the time of i t s  publication. Reference 2 describes 
some s igni f icant  ground-based experimental rocket-exhaust work done by 
the Naval Research Laboratory. 

The most recent f l i g h t  experiences with rocket exhaust e f f e c t s  on 
propagation have been with ba l l i s t ic -miss i le  f l i g h t s  from the Atlant ic  
M i s s i l e  Range, Cape Canaveral, Florida. The phenomena observed during 
these f l i g h t s  are  described i n  references 3 and 4. The cha rac t e r i s t i c s  
of the observed phenomena a re  usual ly  severe interference with e lec t ro-  
magnetic propagation during powered f l i g h t  with the interference occur- 
r i ng  most of ten between the a l t i t udes  of 200,000 f e e t  and 300,000 f ee t .  

.I 

. 
Opportunities f o r  studying the rocket-exhaust-radio-frequency 

interference problem f o r  solid-propellant motors between the a l t i t u d e s  
of 200,000 f e e t  and 3OO,OOO f e e t  have been few. The first known occur- 
rence of t h e  interference phenomena f o r  solid-propellant vehicles  flown 
from NASA Wallops Stat ion other  than normal stage separation and ign i t ion  
effects ,  w a s  observed during the second-stage burning of Scout ST-1 
launched a t  7:04 p.m. e. s. t. Ju ly  1, 1960. 

The r e s u l t s  of the Scout ST-1 f l i g h t  a re  being reported because of 
widespread i n t e r e s t  i n  ionizat ion e f f e c t s  on electromagnetic propagation 
and i n  methods of a l l ev ia t ing  these e f f ec t s .  The main purposes of t h i s  
report  a r e  t o  present the basic  data  and t o  describe the observed e f f ec t s  
of the rocket exhaust and of the hydrogen peroxide cont ro l  j e t s  on the  
telemeter s igna l  strength.  A br ie f  review of possible  causes of the  
observed phenomena i s  included; however, no e f f o r t  has been made t o  
provide a thorough s c i e n t i f i c  ana lys i s  of the e f f ec t s .  

ROCKET MODEL AND FLIGHT CONDITIONS 

Rocket Mode 1 
4 

The Scout vehicle configuration i s  shown i n  f igure  1. 
numbers i n  the f igure locate  important p a r t s  of the  vehicle  i n  inches 
from a reference point 4.8 inches forward of the nose t i p .  

The s t a t i o n  

The vehicle  b 

. . ..: v * 
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consis ts  of four  powered stages and the  payload. 
solid-propellant rockets but important parameters such as f u e l  burning 
rate ,  combustion products, and rocket chamber pressure d i f f e r  from motor 
t o  motor. The rocket motor most i m p o r t a n t  t o  t h i s  presentation i s  the  
second stage. The s ignif icant  character is t ics  of t h i s  motor are  given 
i n  tab le  I. 
manufacturer. The r a t i o  of specif ic  heats  w a s  estimated. A l l  o ther  
values were measured. 

A l l  the  motors are 

The l i s t  of combustion products w a s  furnished by the rocket 

, 

The vehicle i s  guided along the prescribed t r a j ec to ry  by a guidance 
and control  system. During f i r s t - s tage  burning, guidance i s  accomplished 
by control l ing the  cant of the f i n  t ips .  During second-stage and th i rd -  
stage burning, guidance i s  accomplished by roll, pitch, and yaw hydrogen 
peroxide control  jets. The fourth stage i s  spin s tabi l ized.  The controls 
most important t o  t h i s  report  are the second-stage hydrogen peroxide j e t s .  
The location of these j e t s  i s  shown in f igure 2. There are e ight  j e t s :  
Two pitch,  two yaw, and four roll. The important charac te r i s t ics  of these 
jets a re  l i s t e d  i n  t ab le  11. The mass-flow ra tes ,  chamber pressure, and 
adiabatic decomposition temperature are measured values. 
t e n t  of the  react ion products i s  a calculated value. 

The oxygen con- 

. 
Flight  Conditions 

The three curves i n  f igure  3 describe the t r a j ec to ry  flown by 
Scout ST-1 during second-stage burning. Altitude, ground range, and 
ve loc i ty  a re  p lo t ted  with respect t o  time. 
obtained from the  radar p lo t  of the t ra jec tory  flown. The region of 
i n t e r e s t  i s  from igni t ion  t o  burnout of second stage. 

Data f o r  these curves were 

National Bureau of Standards ionospheric sounding s t a t ions  a t  
Boulder, Colorado, and F't. Belvoir, Virginia, reported t h a t  the iono- 
sphere w a s  normal a t  the time of launch of Scout ST-1 with no detectable 
unusual a c t i v i t y  i n  progress. 

INSTRUMENTATION AND MEASUREMENTS 

I n s  t nunent a t  ion 

During second-stage burning there were two standard I R I G  ( In te r -  
Range Instrumentation Group) FM/FM telemeters, one standard NASA 
FM/AM telemeter, one UHF command receiver, and one C-band radar beacon 
i n  operation. Antenna locations are  shown i n  f igure  2. A s  i s  shown i n  
t h i s  f igure,  two of t he  V" signals are diplexed t o  one antenna. Radia- 
t i o n  pa t te rns  f o r  the VHF and C-band antennas a re  given i n  f igures  4, 5 ,  
and 6. Signal-frequencies, power levels, and antenna types a re  given 
i n  t ab le  111. 



U NCLASSI Fl ED 
4 

Ground-support i n s t m e n t a t i o n  included VHF telemetry receiving 
s ta t ions,  a UHF command transmitter,  and a C-band radar a t  NASA Wallops 
Station, Wallops Island, and a VKF telemetry receiving s t a t ion  a t  the 
Langley Research Center, Langley Field. The VHF telemetry receiving 
s ta t ions at Wallops Island used he l ix  and yagi antennas while the sta- 
t i o n  a t  Langley Field used a yagi antenna. 

Figure 7 i s  a rough map which shows the general or ientat ion of 
Wallops Island, Langley Field, and the vehicle during second-stage 
burning. 
peroxide control j e t s  with respect t o  look angles from Wallops Island 
and Langley Field. 

Figure 8 shows the  or ientat ion of vehicle antennas and hydrogen 

Measurements 

The basic measurements obtained in  t h i s  invest igat ion were (1) 
received signal strengths of the three VHF s ignals  and the  C-band s ig-  
n a l  at the  Wallops Island s ta t ions,  (2)  received s igna l  strength of 
the 244.3 mc/sec VHF s igna l  a t  Langley Field, (3) presence o r  absence 
of a signal i n  the vehicle command receiver  from a t ransmit ter  located 
a t  Wallops Island, (4)  rocket-motor headcap pressure, ( 5 )  on and off 
periods of yaw, pitch, and roll hydrogen peroxide control  j e t s ,  and 
(6) vehicle a t t i t ude  changes i n  yaw, pitch,  and roll. 
were obtained by d i r e c t  ground recordings while da ta  f o r  items (3) t o  (6) 
were telemetered from the vehicle. The VHF s igna l  strengths and telem- 
etered data  received a t  Wallops Island receiving s t a t ions  were recorded 
on the same magnetic tape t o  y ie ld  the composite signal-strength- 
telemeter-data record shown i n  f igure  9. This f igure  permits accurate 
t i m e  correlation of important events occurring during the vehicle f l i g h t .  

. 

Items (1) and (2) 

RESULTS 

During second-stage burning of Scout ST-1 no instrumentation or 
control-system malfunctions occurred and the vehicle and control-system 
performance was such t h a t  f o r  a l t i t u d e s  from 197,000 f e e t  t o  258,000 f e e t  
the  vehicle a t t i t ude  varied less than lo i n  yaw, 0.4' i n  pitch,  and 0.6' 
i n  roll. In a l l  probabili ty,  therefore,  the observed phenomena were 
due t o  nei ther  equipment malfunction nor vehicle-at t i tude change. 

Rocket &haust Effects  

The rocket exhaust e f f e c t s  on the  VHF s ignals  received a t  Wallops 
I s l a n d  are evident i n  f igure  9. Upon second-stage ign i t i on  a t  an 
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a l t i t u d e  of approximately l30,OOO feet ,  indicated by a sudden r i s e  i n  
headcap pressure, a rapid drop i n  the received s ignal  strength with 
gradual re turn  toward normal was observed f o r  a l l  frequencies. 
type of s ignal  l o s s  a t  stage separation and ign i t ion  i s  not unusual and 
i s  generally referred t o  as staging ef fec ts  ( r e f .  3 ) .  It i s  believed t o  
be caused by such things as (1) a change i n  radiated power because of 
the decrease i n  vehicle length when a stage separates, (2 )  a change i n  
radiat ion pa t te rns  because of ref lect ions from the  separating stage, 
(3)  antenna detuning o r  breakdown occurring when the  separated stage 
def lec ts  the  exhaust of the next stage i n t o  the  v i c in i ty  of the antennas, 
and (4)  a t tenuat ion o r  re f lec t ion  caused by the  newly igni ted rocket.  

This 

A t  an a l t i t u d e  of 197,000 f e e t  more severe e f f ec t s  on a l l  VHF sig- 
na ls  began simultaneously. 
Wallops Island d i r e c t l y  behind the vehicle decreased i n  amplitude a 
maximum of 20 decibels r e l a t ive  t o  the amplitudes before the severe 
e f f e c t s  s ta r ted .  
increased a m a x i m u m  of 5 decibels re la t ive  t o  the amplitude before the 
severe e f f e c t s  s tar ted.  Sections of a Wallops Island record and the  
Langley Field record correlated i n  time are  compared i n  f igure 10. 

A s  shown in f igure  9, signals received a t  

A t  the same time the s igna l  received a t  Langley Field 

The l ine-of-sight transmission paths from the vehicle antennas t o  
the receiving s t a t ions  with respect t o  the rocket exhaust are shown i n  
f igure  11." A t  an a l t i t ude  of 200,000 f e e t  the exhaust diameter w a s  
estimated t o  be 80 f e e t  and the j e t  incl inat ion angle w a s  approximately 
90'. These values were estimated by using tab le  I and reference 5. 
vehicle antennas were located approximately 31 f e e t  and 37 f e e t  forward 
of the  second-stage nozzle. (See f i g .  2 . )  The s igna l  monitored a t  
Langley Field w a s  from the antenna which w a s  approximately 37 f e e t  forward 
of the nozzle. 
Langley Field. (See f ig .  8. ) 

The 

The look angles were 4' from Wallops Island and 54' from 

A t  an a l t i t u d e  of 238,000 f e e t  the three VHF signals  recovered and 
no fu r the r  exhaust e f f ec t s  were observed. 
j u s t  af ter  the beginning of rocket motor t a i l -o f f ,  indicated i n  f i g -  
ure 9 by a gradual decrease i n  headcap pressure. 

This s igna l  recovery occurred 

The rocket exhaust e f f ec t s  on the C-band s igna l  are shown i n  f i g -  
ure 12. Typical s igna l  dropout with gradual re turn t o  normal occurred 
a t  second-stage igni t ion.  
where severe e f f e c t s  on the VHF signals occurred, only minor noise w a s  
observed on the C-band signal-strength record. 

For a l t i tudes  from 197,000 f e e t  t o  258,000 f e e t  

The U" command receiver which was being monitored f o r  the  presence 
or absence of a s igna l  from a ground-based t ransmit ter  did not lose s igna l  

:- 

U N Ck AS S 1 F I ED 
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DISCUSSION 

Rocket Exhaust Effects  

Rocket exhaust e f f ec t s  on rad io  frequency propagation are general ly  
a t t r i bu ted  t o  f r ee  e lec t rons  (refs. 1 t o  4). In  su f f i c i en t  concentrations - 
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because of flame e f f e c t s  except a t  rocket-motor igni t ion.  
expected because the power margin i n  the UHF system w a s  su f f i c i en t  t o  
permit large attenuations without t o t a l  s igna l  loss. The automatic gain 
control  voltage of the  airborne receiver  w a s  not monitored. 

This w a s  as 

Only stage-separation e f f e c t s  were observed during the burning of 
the th i rd  and fourth stages.  

Rocket exhaust e f f e c t s  on radio frequency propagation similar t o  
those described f o r  Scout ST-1 a lso  occurred during second-stage burning 
of Scout ST-2. Scout ST-2 w a s  launched from NASA Wallops Stat ion a t  
lO:.23 a.m. e . s . t  October 4, 1960. 

Signal Recovery During Rocket Exhaust Effects  

During the period of rocket exhaust e f f e c t s  on the VHF s ignals ,  
intermit tent  s ignal  recovery w a s  observed. This s igna l  recovery i s  
shown i n  the received-signal-strength record i n  f igure  9. It i s  f i r s t  
observed as slight humps i n  the  record during the  staging ef fec ts .  
During the subsequent period of severe rocket exhaust e f f e c t s  the i n t e r -  
mit tent  recovery i s  more apparent, with complete recovery from the 
20-decibel loss caused by the rocket exhaust. During the s a c  i n t e r -  
mit tent  recovery periods the s igna l  received a t  Langley Field, which had 
increased 5 decibels because of the  rocket exhaust e f f ec t s ,  returned t o  
normal as shown i n  f igure  10. 

* 

Each period of in te rmi t ten t  VHF s igna l  recovery began exac t ly  a t  
the time of operation of e i t h e r  a pitch-down o r  a yaw right hydrogen 
peroxide control  j e t .  
The recovery period w a s  longer when there  w a s  a time overlap i n  the  
operation of a p i tch  and yaw jet .  
not operate during the period of rocket exhaust e f f ec t s .  
which were much smaller than the p i t ch  and yaw je ts  (see t ab le  11), 
caused some improvement of the s igna l  but d id  not cause complete recovery. 

The period of operation i s  indicated i n  f igure  9. 

The pitch-up and yaw l e f t  j e t s  did 
The r o l l  jets, 

Similar s igna l  recovery on in j ec t ion  of decomposed hydrogen peroxide 
i n t o  the flow f i e l d  occurred during the  second-stage burning of 
Scout ST-2. 

DISCUSSION 
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these electrons can absorb and r e f l ec t  telemeter s ignals  and enhance 
antenna breakdown. The required concentration has been theo re t i ca l ly  
determined by many sources. For 
the high-alt i tude case under consideration and the VHF frequencies used, 
the electron concentration required i s  estimated t o  be lo9 
greater.  
c r i t i c a l  concentrations associated with radio propagation i n  the iono- 
sphere. The re f lec t ive  and absorptive propert ies  of the ionosphere 
exhib i t  a sharp dependence on frequency. 
plasma frequency are  re f lec ted  o r  absorbed while s ignals  above the plasma 
frequency are  e s sen t i a l ly  unaffected. 
function of the ambient electron concentration and is  described i n  
reference 7. 

See references 6 and 7 as  examples. 

o r  
This electron-concentration requirement i s  analogous t o  the  

Signals below a c r i t i c a l  o r  

The plasma-frequency concept i s  a 

For the  Scout vehicle the problem i s  t o  specify the  source of 
electrons.  It i s  possible t h a t  several  f ac to r s  contributed t o  producing 
the  conditions necessary t o  cause the exhaust e f f e c t s  t h a t  were observed. 
A l i s t  and b r i e f  discussion of these fac tors  follow: 

1. Afterburning - One source of free electrons was probably the 
chemical react ions ( re fs .  8, 9, and 10) occurring i n  the combustion zone 
o r  near the rocket nozzle ex i t .  A t  high a l t i t udes  the reduced atmos- 
pheric pressure causes rapid expansion of the exhaust products, which 
may hinder e lectron recombination processes. The r e s u l t  would be higher 
e lectron concentrations away from the rocket nozzle than a t  sea level .  
A more important source of electrons however may be the chemical reac- 
t i ons  resu l t ing  from afterburning. 
burning flame i s  commonly much higher than the equilibrium concentration 
i n  the combustion products.) 
of t h i s  excess f u e l  escapes in to  the exhaust unburned. The Scout second 
stage was no exception. 
i n  t ab le  I ( i n  par t icular ,  H2 and CO) are combustible and these needed 
only t o  come i n  contact with an oxidizer t o  cause afterburning. The 
most l og ica l  place f o r  t h i s  afterburning t o  occur w a s  a t  the exhaust 
surface where air  from the flow f i e l d  i s  readi ly  available. The r e s u l t  
of such surface afterburning would be a region a t  the in te r face  of the 
rocket exhaust and the flow f i e l d  with a high electron concentration. 

(The electron concentration i n  a 

Most rocket motors are  f u e l  r i ch  and some 

Several of the products of combustion l i s t e d  

2. Electrons from the ionosphere - Another source of f r ee  e lectrons 
i s  the  ionosphere. The a l t i t ude  of i n t e r e s t  i s  i n  the ionosphere D 
region where the  free-electron concentration i s  approximately 103 
This i s  a r a the r  low value when considered alone but by in te rac t ing  with 
the  flow f i e l d  and rocket exhaust, it i s  possible tha t  these electrons 
from the  ionosphere may have enhanced react ions i n  the high-temperature 
regions about the  vehicle and flame. Perhaps some significance can be 
attached t o  the f a c t  t h a t  the most se'vere flame e f f ec t s  f o r  Scout ST-1 

''-' U N CLASS I F I ED 
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s t a r t e d  a t  an a l t i t u d e  of 197,000 f e e t  which i s  the approximate begin- 
ning of the ionosphere D region. 

3. Rocket-exhaust expansion - Once electrons a re  generated i n  suf- 
f i c i e n t  quant i t ies  t o  a f f ec t  telemeter signals,  the s ize  and shape of 
the exhaust becomes important. 
an a l t i t ude  of 200,000 fee t ,  t he  rocket-exhaust diameter of approximately 
80 f e e t  w a s  large compared with the vehicle diameter and antenna s ize  
and probably acted e s sen t i a l ly  as a ground plane. 

In  the case of the Scout vehicle,  a t  

4. Separated flow - For some aerodynamic considerations the rocket 
exhaust possibly becomes an in t eg ra l  p a r t  of the  vehicle; therefore,  
the s ize  and shape of the rocket exhaust could influence the flow char- 
a c t e r i s t i c s  about the vehicle. 
large it may even cause a region of separated flow on the vehicle. The 
temperature of the separated-flow region may approach the stagnation- 
point temperature. 
rocket exhaust may cause a high-temperature region a t  the exhaust surface. 
During the period of i n t e r e s t  the Scout vehicle w a s  accelerat ing from 
6,000 f t / s ec  t o  8,000 f t / s ec .  
separated-flow region and the  boundary-reattachment area were too low 
t o  provide an electron concentration of 109 cm-3 when considered alone; 
however, it i s  possible t h a t  they did contribute t o  the  ove ra l l  ioniza-  
t i o n  levels,  espec ia l ly  a t  the in te r face  of the  rocket exhaust and flow 
f i e  Id. 

A t  high a l t i t u d e s  where the exhaust i s  

Also the reattachment of the boundary layer  t o  the  

The r e su l t an t  temperatures i n  the 

Antenna breakdown probably w a s  not a f ac to r  i n  the  Scout ST-1 
signal-strength var ia t ions  because (1) the e f f e c t s  on a l l  s igna ls  were 
simultaneous regardless of power levels ,  (2) the slow r a t e  of s igna l  
decay did not portray the sharp d iscont inui ty  usual ly  associated with 
antenna breakdown ( r e f .  3), and (3) the  s igna l  increased a t  Langley F ie ld .  

As i s  shown i n  f igure  9 the recovery of the VHF s igna ls  a t  an a l t i -  
tude of 258,000 f e e t  with no fu r the r  exhaust e f f e c t s  noted corresponded 
with the beginning of rocket-motor t a i l - o f f .  The headcap pressure had 
dropped approximately 15 percent. This i n  i t s e l f  may not be important. 
What may be important, however, i s  t h e  f a c t  t h a t  a t  t a i l - o f f  the motor 
protective l i n ing  starts t o  burn along with the remaining f u e l  and t h i s  
( t he  l in ing  has a high carbon content)  may have a l t e r e d  the  products of 
combustion and thus the ionizat ion i n t e n s i t y  i n  the  exhaust. 

Signal Recovery During Rocket Exhaust Ef fec ts  

Instrument malfunction and vehicle  a t t i t u d e  change ( f ig .  13) have 
been eliminated as causes of s igna l  recovery when the  hydrogen peroxide 
control j e t s  operated. 
reasons f o r  t h i s  s igna l  recovery follow: 

A l i s t  and br ie f  discussion of t he  possible 

c 

L 
1 
4 
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7 
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b 
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1. Cooling of the interface of the exhaust and flow f i e l d  - The 
decomposed products of hydrogen peroxide were injected i n t o  the flow 
region near the rocket nozzle ex i t .  The rapid expansion of these prod- 
uc ts  may have s igni f icant ly  cooled the interface of the exhaust and flow 
f i e l d  and any separated-flow region t h a t  existed.  It i s  d i f f i c u l t  t o  
visual ize  how these products could mix with the exhaust as a whole or 
grea t ly  a f f ec t  i t s  s ize  and shape; therefore, surface-region e f f ec t s  
are  indicated. 

2. Removal of f r ee  e lectrons by attachment - The products of decom- 
posed hydrogen peroxide are 60 percent steam and 40 percent oxygen 
( tab le  11). 
shel l ;  therefore, it has an a f f i n i t y  f o r  f r ee  e lectrons (refs. 11 and 12) 
and the  excess oxygen may have s igni f icant ly  decreased the  electron con- 
centrat ion by removing electrons f rom the  flow-field-rocket-exhaust 
in te r face .  The separated-flow region and rocket-exhaust-flow-field 
in te r face  would provide a good mixing zone f o r  reducing surface-region 
e f f e c t s .  

Oxygen i s  two electrons short  of completion i n  i t s  outer  

CONCLUDING REMARKS 

Rocket exhaust e f f ec t s  on VHF propagation from Scout ST-1, which 
used solid-propellant rocket motors, were observed during second-stage 
burning a t  a l t i t u d e s  from l30,OOO fee t  t o  258,000 fee t .  
on the VHF s ignals  from Scout ST-2 were a l so  noted. These e f fec ts ,  
which were observed as reduction of s igna l  strength a t  receiving s t a t ions  
behind the vehicle and enhancement of s igna l  strength a t  a receiving 
s t a t ion  t o  the  s ide of the vehicle, were probably caused by f r ee  e lec-  
t rons i n  the region of the exhaust-flow-field interface.  Possible con- 
t r i bu t ing  f ac to r s  were (1) afterburning, (2) ionospheric enhancement, 
(3) rocket-exhaust expansion, and (4) separated flow. 

Similar e f f ec t s  

In jec t ion  of decomposed hydrogen peroxide in to  the flow f i e l d  
removed the rocket exhaust e f f ec t s  for  Scouts ST-1 and ST-2. Possible 
reasons were (1) removal of f r e e  electrons by recombination i n  cooling 
<he exhaust-flow-field in te r face  and (2) removal of f r ee  e lectrons by 
attachment t o  the  excess oxygen. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Field, Va. ,  January 4, 1961. 
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TABLE I 

PERTINENT DATA ON SCOUT SECOND-STAGE ROCKET MOTOR 

[Ml values l i s t e d  are approximate 1 
Total fuel  weight, l b  . . . . . . . . . . . . . . . . . . . .  7,300 

Percent i n  f i r s t  27 seconds . . . . . . . . . . . . .  89 (240 lb/sec)  
Percent i n  next 11 seconds . . . . . . . . . . . . .  11 ( t a i l - o f f )  

~ 2 0 3  . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.06613 
co . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.24655 
H 2 0 . .  . . . . . . . . . . . . . . . . . . . . . . . . . .  0.12286 
H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.30532 
S . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.00364 
N 2  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.07592 
HC1.. . . . . . . . . . . . . . . . . . . . . . . . . . .  0.15180 
C O ~ .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.02765 
H . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.000076 
OH . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.000025 

Chamber pressure, lb/sq in .  abs . . . . . . . . . . . . . . .  520 
Exit  pressure, lb / sq  i n .  abs . . . . . . . . . . . . . . . .  4 
Chamber temperature, OF . . . . . . . . . . . . . . . . . . .  5, 225 
Exi t  temperature, OF . . . . . . . . . . . . . . . . . . . .  2,580 
Ratio of spec i f ic  heats . . . . . . . . . . . . . . . . . . .  1 .2  
Throat diameter, i n .  . . . . . . . . . . . . . . . . . . . .  9.69 
Exi t  diameter, i n .  . . . . . . . . . . . . . . . . . . . . .  38.5 
Divergence angle of nozzle, deg . . . . . . . . . . . . . . .  20.66 
Exi t  density, lb/cu f t  . . . . . . . . . . . . . . . . . . .  0.00328 
Density j u s t  outside ex i t ,  lb/cu ft  . . . . . . . . . .  0.001 t o  0.002 
Exit  Mach number . . . . . . . . . . . . . . . . . . . . . .  3.41 

Fuel burning ra te :  

Products o f  combustion ( ins ide  combustion chamber) : 
Product Mole f r ac t ion  c 

L 
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Frequency, mc 

240.2 
244.3 
259.7 
400 

3,560 

TABLE I1 

Frequency band Power Antenna type 

VHF a =tts Dipole spikes 
VRF 1.5 w a t t s  Dipole spikes 
VHF 1 2  w a t t s  Dipole spikes 
UHF Receiver Dipole bowtie 

C 400 watts peak Stub with r e f l e c t o r  

HYDROGEN PEROXIDE JET CHARACTERISTICS 

values l i s t e d  a r e  approximatel 

b 

. . . . . . . . . .  Nmber of j e t s  ( 2  yaw, 2 pitch,  and 4 r o l l )  a 

P i t c h a n d y a w j e t s  3.5 

J e t  locat ion . . . . . . . . . . . . . . .  Around second-stage nozzle 
Mass-flow ra te ,  lb/sec: 

. . . . . . . . . . . . . . . . . . . . .  
Roll j e t s  . . . . . . . . . . . . . . . . . . . . . . . . . .  0.143 

300 t o  400 Chamber pressure, lb/sq in .  abs . . . . . . . . . . . . . .  
Decomposition process: 

Hydrogen peroxide (90 percent pure) i s  passed through a s i l v e r  
screen ca t a lys t  which converts it t o  oxygen (40 percent)  and 
steam (60 percent) . . . . . . . . . . . .  Adi aba ti c de c ompo s i t i on temperature, OF 1,364 

TABLE I11 

SIGNAL FREQUENCIES, TRANSMI- POWERS, AND A " A  TYPES 

1 1 I 1 
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Figure 1.- Vehicle configuration. Scout ST-1- 
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Figure 8.- Antenna and control- j e t  or ientat ion with respect t o  receiving 
s ta t ions .  Scout ST-1. 
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Figure 11.- Rocket exhaust at altitude of 200,000 feet with respect to 
line-Of-Sight transmission paths from vehicle antennas to receiving 
stations. Scout ST-1. 
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